Find the inverse of $f(x)=(x-1)^{2}$

$$
y=(x-1)^{2}
$$

$$
\sqrt{y}=x-1
$$

$$
\sqrt{y}+1=x
$$

$$
\begin{aligned}
f(x) & =(x-1)^{2} \\
f(-3) & =(-3-1)^{2} \\
& =(-4)^{2} \\
& =16
\end{aligned}
$$

$$
f^{-1}(y)=\sqrt{y}+1
$$

let $x=5 \quad f(x)=(5-1)^{2}=4^{2}=16=y$
let $y=16$

$$
\begin{array}{rlrl}
f^{-1}(16) & =\sqrt{16}+1 & \\
& =4+1 \text { or } & -4+1 \\
& =5 & & =-3
\end{array}
$$

$$
\begin{aligned}
& f(x)=2 x^{2} \\
& f(3)=2 \times 3^{2}=2 \times 9=18 \\
& \uparrow_{\text {input }} y_{\text {output }} \\
& f^{-1}(18)=3 \\
& f(x)=2 x^{2} \\
& y=2 x^{2} \\
& \frac{y}{2}=x^{2} \\
& \sqrt{\frac{y}{2}}=\sqrt{x^{2}} \\
& \sqrt{\frac{y}{2}}=x \\
& f(x)=2 x^{2} \\
& f^{-1}(y)=\sqrt{\frac{y}{2}} \\
& f(3)=2 \times 3^{2}=2 \times 9=18 \\
& f(-3)=2 \times(-3)^{2} \\
& f^{-1}(18)=\sqrt{\frac{18}{2}} \\
& =2 \times 9=18 \\
& =\sqrt{9} \\
& = \pm 3
\end{aligned}
$$

