Surds lesson 6 - Binomial Expansion

Wednesday, January 01, 2014
6:40 PM

$$
\begin{aligned}
& \text { Simplify } \sqrt{a^{3} b^{4}} \times \sqrt{a^{2} y^{2}} \\
& =\sqrt{a^{3}} \times \sqrt{b^{4}} \times \sqrt{a^{2}} \times \sqrt{y^{2}} \\
& =\sqrt{a^{2}} \times \sqrt{a} \times b^{2} \times d \times y \\
& =a^{2} b^{2} y \sqrt{a} \\
& \sqrt{3}\left(\frac{4}{2}+7\right) \\
& a(b+c)=a b+a c \\
& \sqrt{a}(\sqrt{b}+\sqrt{c}) \\
& =2 \sqrt{3}+7 \sqrt{3} \quad=\sqrt{a b}+\sqrt{a c} \\
& \sqrt{7}(\sqrt{10}+\sqrt{2}) \\
& =\sqrt{70}+\sqrt{14} \\
& \text { Expand } 2 \sqrt{3}(-\sqrt{10}-5 \sqrt{3}) \\
& =-2 \sqrt{30}-10 \sqrt{x} 3 \\
& =-2 \sqrt{30}-30 \\
& (\overrightarrow{a+b)(c+d)}=a c+a d+b c+b d \\
& \text { (} 7 \sqrt{2}-3 \sqrt{5})\left(\frac{1}{7} \sqrt{2}+3 \sqrt{5}\right) \\
& =49 \sqrt{x}^{2}+21 \sqrt{10}-21 \sqrt{10}-9 \sqrt{25} 5 \\
& =98+24-20-45 \\
& =53 \\
& (3 \sqrt{2}+5 \sqrt{3})(4 \sqrt{7}-5 \sqrt{6}) \\
& =12 \sqrt{14}-15 \sqrt{12}+20 \sqrt{21}-25 \sqrt{18} \\
& =12 \sqrt{14}-15 \sqrt{4} \sqrt{3}+20 \sqrt{21}-25 \sqrt{\frac{3}{4}} \sqrt{2} \\
& =12 \sqrt{14}-30 \sqrt{3}+20 \sqrt{21}-75 \sqrt{2}
\end{aligned}
$$

