Surds lesson 8 - Rationalise denominators using conjugates
Wednesday, January 01, 2014 9:34 PM

$$
\begin{aligned}
& \frac{\sqrt{3}}{\sqrt{2}+\sqrt{5}}=\frac{\sqrt{3}}{(\sqrt{2}+\sqrt{5})} \times \frac{(\sqrt{2}-\sqrt{5})}{(\sqrt{2}-\sqrt{5})} \\
= & \frac{\sqrt{3}(\sqrt{2}-\sqrt{5})}{(\sqrt{2}+\sqrt{5})(\sqrt{2}-\sqrt{5})} \\
= & \left.\frac{\sqrt{6}-\sqrt{15}}{2-\sqrt{2}+\sqrt{2}-5}\right)(\sqrt{2}-\sqrt{5}) \\
& \frac{-1(\sqrt{6}-\sqrt{15})}{\text { conjugate }}=\frac{-\sqrt{6}+\sqrt{15}}{3}
\end{aligned}
$$

Rationalise the denominator:

$$
\begin{aligned}
\frac{2 \sqrt{11}-3 \sqrt{3}}{2 \sqrt{11}+3 \sqrt{3}} & =\frac{2 \sqrt{11-3 \sqrt{3}}}{2 \sqrt{11}+3 \sqrt{3}} \times \frac{2 \sqrt{11}-3 \sqrt{3}}{2 \sqrt{11}-3 \sqrt{3}} \\
& =\frac{(2 \sqrt{11}-3 \sqrt{3})(2 \sqrt{11}-3 \sqrt{3})}{(2 \sqrt{11+3 \sqrt{3})(2 \sqrt{11}-3)}} \\
& =\frac{4 \times 11-6 \sqrt{33}-6 \sqrt{33}+9 \times 3}{4 \times 11-6 \sqrt{33}+6 \sqrt{33}-9 \times 3} \\
& =\frac{44-12 \sqrt{33}+27}{44-27} \\
& =\frac{-12 \sqrt{33}+71}{17}
\end{aligned}
$$

