Linear transformations with Matrices lesson 12 - Given the image, find the original point

Magic Monk Tutorials

1 A point (x, y) has been reflected in the \mathbf{x} axis with an image of $(2,3)$. Find the original point (x, y)

From a previous video, we know that the matrix for reflection in the x axis is
$T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
It can be shown that $T=T^{-1}$. Use the general transformation equation, where we have $\left(x^{\prime}, y^{\prime}\right)$ and we want to find (x, y).
$\binom{x^{\prime}}{y^{\prime}}=T\binom{x}{y}$
$\binom{x}{y}=T^{-1}\binom{x^{\prime}}{y^{\prime}}$
$\binom{x}{y}$
$=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{2}{3}$
$\binom{x}{y}=\binom{2}{-3}$
2 A point (x, y) has been transformed under $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ with an image of $(3,2)$. Find the original point (x, y)

As before, find the inverse of T.
$T^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$
Use this in our general formula.
$\binom{x^{\prime}}{y^{\prime}}=T\binom{x}{y}$
$\binom{x}{y}=T^{-1}\binom{x^{\prime}}{y^{\prime}}$
$\binom{x}{y}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\binom{3}{2}$
$\binom{x}{y}=\binom{1}{2}$

3 The line $y^{\prime}=\frac{1}{2} x^{\prime}+2$ is the result of a transformation under the matrix $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Find the original line.

Assume the original line is of the form $y=a x+b$. Apply our transformation T to this line.
$\binom{x^{\prime}}{y^{\prime}}=T\binom{x}{y}$
$\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\binom{x}{y}$
$\binom{x^{\prime}}{y^{\prime}}=\binom{x+y}{y}$

Therefore $y^{\prime}=y$ and $x=x^{\prime}-y^{\prime}$. Plug these into our equation $y=a x+b$.
$y^{\prime}=a\left(x^{\prime}-y^{\prime}\right)+b$
$y^{\prime}=a x^{\prime}-a y^{\prime}+b$
$y^{\prime}+a y^{\prime}=a x^{\prime}+b$
$y^{\prime}(1+a)=a x^{\prime}+b$
$y^{\prime}=\frac{a x^{\prime}+b}{1+a}$
We may now solve for our a and b, knowing that $2=\frac{b}{1+a}$ and $\frac{1}{2}=\frac{a}{1+a}$. Starting with our second equation, we have
$1+a=2 a$ and so $1=a$. Substituting this into our first equation, we bet $b=4$. Therefore our original line is $y=x+4$.

