Linear transformations with Matrices lesson 2 - Translation of
a curve

Magic Monk Tutorials
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1 Translate the curve y = 2z — 3 by the point p; = and
3
plot it in the x-y plane.

As discussed in the video, translation of a curve by a point is done using the following formula.
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We can substitute in our p; and simplify this expression.
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Now we can substitute x for 2’ + 2 and y for ¢’ — 3 and rearrange to get our resulting
function.

y=2x—3
(Y —=3)=2("4+2)-3
y =22 +4

Below is a plot of this new graph on the x-y plane.
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simplify the resulting function and plot the result in the
x-y plane.

2 Translate the curve y = 2% 4 2z + 2 by the point T =

Use the following formula for translating a curve.
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As before, substitute x for ' — 1 and y for 3’ + 1 in the original curve.

y=a 42z 42

Y +1=(' -1 +2 —1)+2
y =2 22 +1+22 —2+2-1
y/:x/2

The plot can be seen below. Note that all we have done is shifted the original curve right

by 1 unit in the z axis and down 1 unit in the y axis.
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3 Find a point that translates the curve y = — so that it passes
x

through the point r =y = 4.

We wish to find a, b so that a point (x,y) exists such that <§> + (Z) = <i>

Rearranging gives

()= ()

1
Now substituting this into our curve y = — results in
T

1
dma=17g
(4—a)(4—b) =1

Now we may read of a solution, a = b = 3 satisfies the above equation. So our trans-
3

formation is T' = L
Note that there are infinitely many solutions to the above equation, a = b = 5 being another
solution we could have chosen.

4 Translate the curve y = sin(z) by the point T = <_7(T)/2),

and plot the result in the x-y plane.

As before, /(g) 4T = (g:)
()= (57")

And we have y' = sin(z 4 7/2) which is equivalent to y" = cos(2').
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